Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Cell Rep ; 43(4): 113970, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38512868

ABSTRACT

To meet the high energy demands of brain function, cerebral blood flow (CBF) parallels changes in neuronal activity by a mechanism known as neurovascular coupling (NVC). However, which neurons play a role in mediating NVC is not well understood. Here, we identify in mice and humans a specific population of cortical GABAergic neurons that co-express neuronal nitric oxide synthase and tachykinin receptor 1 (Tacr1). Through whole-tissue clearing, we demonstrate that Tacr1 neurons extend local and long-range projections across functionally connected cortical areas. We show that whisker stimulation elicited Tacr1 neuron activity in the barrel cortex through feedforward excitatory pathways. Additionally, through optogenetic experiments, we demonstrate that Tacr1 neurons are instrumental in mediating CBF through the relaxation of mural cells in a similar fashion to whisker stimulation. Finally, by electron microscopy, we observe that Tacr1 processes contact astrocytic endfeet. These findings suggest that Tacr1 neurons integrate cortical activity to mediate NVC.


Subject(s)
Neurovascular Coupling , Animals , Mice , Neurovascular Coupling/physiology , Humans , Neurons/metabolism , Neurons/physiology , Vibrissae/physiology , Mice, Inbred C57BL , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Male , Cerebral Cortex/physiology , Cerebral Cortex/blood supply , Cerebrovascular Circulation/physiology , Nitric Oxide Synthase Type I/metabolism
2.
bioRxiv ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38187527

ABSTRACT

Advancements in microscopy techniques and computing technologies have enabled researchers to digitally reconstruct brains at micron scale. As a result, community efforts like the BRAIN Initiative Cell Census Network (BICCN) have generated thousands of whole-brain imaging datasets to trace neuronal circuitry and comprehensively map cell types. This data holds valuable information that extends beyond initial analyses, opening avenues for variation studies and robust classification of cell types in specific brain regions. However, the size and heterogeneity of these imaging data have historically made storage, sharing, and analysis difficult for individual investigators and impractical on a broad community scale. Here, we introduce the Brain Image Library (BIL), a public resource serving the neuroscience community that provides a persistent centralized repository for brain microscopy data. BIL currently holds thousands of brain datasets and provides an integrated analysis ecosystem, allowing for exploration, visualization, and data access without the need to download, thus encouraging scientific discovery and data reuse.

3.
Nature ; 623(7989): 938-941, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37783227

ABSTRACT

Large constellations of bright artificial satellites in low Earth orbit pose significant challenges to ground-based astronomy1. Current orbiting constellation satellites have brightnesses between apparent magnitudes 4 and 6, whereas in the near-infrared Ks band, they can reach magnitude 2 (ref. 2). Satellite operators, astronomers and other users of the night sky are working on brightness mitigation strategies3,4. Radio emissions induce further potential risk to ground-based radio telescopes that also need to be evaluated. Here we report the outcome of an international optical observation campaign of a prototype constellation satellite, AST SpaceMobile's BlueWalker 3. BlueWalker 3 features a 64.3 m2 phased-array antenna as well as a launch vehicle adaptor (LVA)5. The peak brightness of the satellite reached an apparent magnitude of 0.4. This made the new satellite one of the brightest objects in the night sky. Additionally, the LVA reached an apparent V-band magnitude of 5.5, four times brighter than the current International Astronomical Union recommendation of magnitude 7 (refs. 3,6); it jettisoned on 10 November 2022 (Universal Time), and its orbital ephemeris was not publicly released until 4 days later. The expected build-out of constellations with hundreds of thousands of new bright objects1 will make active satellite tracking and avoidance strategies a necessity for ground-based telescopes.

4.
bioRxiv ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37873436

ABSTRACT

Parkinson's disease (PD) targets some dopamine (DA) neurons more than others. Sex differences offer insights, with females more protected from DA neurodegeneration. The mammalian vesicular glutamate transporter VGLUT2 and Drosophila ortholog dVGLUT have been implicated as modulators of DA neuron resilience. However, the mechanisms by which VGLUT2/dVGLUT protects DA neurons remain unknown. We discovered DA neuron dVGLUT knockdown increased mitochondrial reactive oxygen species in a sexually dimorphic manner in response to depolarization or paraquat-induced stress, males being especially affected. DA neuron dVGLUT also reduced ATP biosynthetic burden during depolarization. RNA sequencing of VGLUT+ DA neurons in mice and flies identified candidate genes that we functionally screened to further dissect VGLUT-mediated DA neuron resilience across PD models. We discovered transcription factors modulating dVGLUT-dependent DA neuroprotection and identified dj-1ß as a regulator of sex-specific DA neuron dVGLUT expression. Overall, VGLUT protects DA neurons from PD-associated degeneration by maintaining mitochondrial health.

5.
Microsc Microanal ; 29(Supplement_1): 2093, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37612932
6.
Sci Adv ; 9(23): eadi1405, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37285439

ABSTRACT

Long-duration gamma-ray bursts (GRBs) are powerful cosmic explosions, signaling the death of massive stars. Among them, GRB 221009A is by far the brightest burst ever observed. Because of its enormous energy (Eiso ≈ 1055 erg) and proximity (z ≈ 0.15), GRB 221009A is an exceptionally rare event that pushes the limits of our theories. We present multiwavelength observations covering the first 3 months of its afterglow evolution. The x-ray brightness decays as a power law with slope ≈t-1.66, which is not consistent with standard predictions for jetted emission. We attribute this behavior to a shallow energy profile of the relativistic jet. A similar trend is observed in other energetic GRBs, suggesting that the most extreme explosions may be powered by structured jets launched by a common central engine.

7.
STAR Protoc ; 3(1): 101178, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35243370

ABSTRACT

Although there are numerous tissue clearing protocols, most are inadequate for clearing liver tissue. Here we present a flexible protocol for mouse liver tissue; we combine strategies from several previously published protocols for delipidation, decolorization, staining, and refractive index matching. LiverClear is sufficiently versatile to allow clearing of healthy and diseased mouse liver followed by immunofluorescence staining and imaging to visualize intact 3D structures such as bile ducts and hepatocyte canaliculi. We also adapted this protocol for clearing human livers. For complete details on the use and execution of this protocol, please refer to Molina et al. (2021).


Subject(s)
Liver , Animals , Liver/diagnostic imaging , Mice , Staining and Labeling
8.
J Neurosci ; 41(18): 4141-4157, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33731451

ABSTRACT

Zebrafish models are used increasingly to study the molecular pathogenesis of Parkinson's disease (PD), owing to the extensive array of techniques available for their experimental manipulation and analysis. The ascending dopaminergic projection from the posterior tuberculum (TPp; diencephalic populations DC2 and DC4) to the subpallium is considered the zebrafish correlate of the mammalian nigrostriatal projection, but little is known about the neurophysiology of zebrafish DC2/4 neurons. This is an important knowledge gap, because autonomous activity in mammalian substantia nigra (SNc) dopaminergic neurons contributes to their vulnerability in PD models. Using a new transgenic zebrafish line to label living dopaminergic neurons, and a novel brain slice preparation, we conducted whole-cell patch clamp recordings of DC2/4 neurons from adult zebrafish of both sexes. Zebrafish DC2/4 neurons share many physiological properties with mammalian dopaminergic neurons, including the cell-autonomous generation of action potentials. However, in contrast to mammalian dopaminergic neurons, the pacemaker driving intrinsic rhythmic activity in zebrafish DC2/4 neurons does not involve calcium conductances, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, or sodium leak currents. Instead, voltage clamp recordings and computational models show that interactions between three components - a small, predominantly potassium, leak conductance, voltage-gated sodium channels, and voltage-gated potassium channels - are sufficient for pacemaker activity in zebrafish DC2/4 neurons. These results contribute to understanding the comparative physiology of the dopaminergic system and provide a conceptual basis for interpreting data derived from zebrafish PD models. The findings further suggest new experimental opportunities to address the role of dopaminergic pacemaker activity in the pathogenesis of PD.SIGNIFICANCE STATEMENT Posterior tuberculum (TPp) DC2/4 dopaminergic neurons are considered the zebrafish correlate of mammalian substantia nigra (SNc) neurons, whose degeneration causes the motor signs of Parkinson's disease (PD). Our study shows that DC2/4 and SNc neurons share a number of electrophysiological properties, including depolarized membrane potential, high input resistance, and continual, cell-autonomous pacemaker activity, that strengthen the basis for the increasing use of zebrafish models to study the molecular pathogenesis of PD. The mechanisms driving pacemaker activity differ between DC2/4 and SNc neurons, providing: (1) experimental opportunities to dissociate the contributions of intrinsic activity and underlying pacemaker currents to pathogenesis; and (2) essential information for the design and interpretation of studies using zebrafish PD models.


Subject(s)
Biological Clocks/physiology , Dopaminergic Neurons/physiology , Zebrafish/physiology , Action Potentials/physiology , Animals , Animals, Genetically Modified , Calcium Signaling/physiology , Diencephalon/physiology , Female , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/physiology , Male , Neostriatum/physiology , Neural Pathways/physiology , Patch-Clamp Techniques , Potassium Channels, Voltage-Gated/physiology , Substantia Nigra/physiology , Voltage-Gated Sodium Channels/physiology
9.
Structure ; 29(1): 82-87.e3, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33096015

ABSTRACT

The advancement of serial cryoFIB/SEM offers an opportunity to study large volumes of near-native, fully hydrated frozen cells and tissues at voxel sizes of 10 nm and below. We explored this capability for pathologic characterization of vitrified human patient cells by developing and optimizing a serial cryoFIB/SEM volume imaging workflow. We demonstrate profound disruption of subcellular architecture in primary fibroblasts from a Leigh syndrome patient harboring a disease-causing mutation in USMG5 protein responsible for impaired mitochondrial energy production.


Subject(s)
Fibroblasts/ultrastructure , Leigh Disease/pathology , Cells, Cultured , Cryoelectron Microscopy/methods , Humans , Leigh Disease/genetics , Mitochondria/ultrastructure , Mitochondrial Proton-Translocating ATPases/genetics , Mutation , Primary Cell Culture/methods
11.
JCI Insight ; 5(20)2020 10 15.
Article in English | MEDLINE | ID: mdl-32910805

ABSTRACT

In the aging population, lower urinary tract (LUT) dysfunction is common and often leads to storage and voiding difficulties classified into overlapping symptom syndromes. Despite prevalence and consequences of these syndromes, LUT disorders continue to be undertreated simply because there are few therapeutic options. LUT function and structure were assessed in aged (>25 months) male and female Fischer 344 rats randomized to oral treatment with a purine nucleoside phosphorylase (PNPase inhibitor) 8-aminoguanine (8-AG) or vehicle for 6 weeks. The bladders of aged rats exhibited multiple abnormalities: tactile insensitivity, vascular remodeling, reduced collagen-fiber tortuosity, increased bladder stiffness, abnormal smooth muscle morphology, swelling of mitochondria, and increases in urodamaging purine metabolites. Treatment of aged rats with 8-AG restored all evaluated histological, ultrastructural, and physiological abnormalities toward that of a younger state. 8-AG is an effective treatment that ameliorates key age-related structural and physiologic bladder abnormalities. Because PNPase inhibition blocks metabolism of inosine to hypoxanthine and guanosine to guanine, likely uroprotective effects of 8-AG are mediated by increased bladder levels of uroprotective inosine and guanosine and reductions in urodamaging hypoxanthine and xanthine. These findings demonstrate that 8-AG has translational potential for treating age-associated LUT dysfunctions and resultant syndromes in humans.


Subject(s)
Aging/genetics , Guanine/analogs & derivatives , Purine-Nucleoside Phosphorylase/genetics , Urologic Diseases/drug therapy , Aging/drug effects , Animals , Disease Models, Animal , Female , Guanine/pharmacology , Humans , Male , Purine-Nucleoside Phosphorylase/antagonists & inhibitors , Rats , Urinary Bladder/drug effects , Urinary Bladder/pathology , Urologic Diseases/genetics , Urologic Diseases/pathology
12.
medRxiv ; 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32817968

ABSTRACT

SARS-CoV-2 pneumonia may induce an aberrant immune response with brisk recruitment of myeloid cells into the lower respiratory tract, which may contribute to morbidity and mortality. We describe endotracheal aspirate samples from seven patients with SARS-CoV-2 pneumonia requiring mechanical ventilation. We note SARS-CoV-2 virions within lower respiratory tract myeloid cells shown by electron tomography, immunofluorescence confocal imaging, and immuno-electron microscopy. Endotracheal aspirates are primarily composed of mononuclear and polymorphonuclear leukocytes. These myeloid cells that harbor virus are frequently positive for CD14 and/or CD16 and most display an inflammatory phenotype marked by expression of IL-6 and tissue factor mRNA transcript and protein expression.

13.
Curr Protoc Cytom ; 93(1): e77, 2020 06.
Article in English | MEDLINE | ID: mdl-32502333

ABSTRACT

SARS-CoV-2 is a novel coronavirus that causes the acute respiratory disease-Coronavirus disease 2019 (COVID-19)-which has led to a global health crisis. Currently, no prophylactics or therapies exist to control virus spread or mitigate the disease. Thus, the risk of infection for physicians and scientists is high, requiring work to be conducted in Biosafety Level-3 (BSL-3) facilities if virus will be isolated or propagated. However, inactivation of the virus can enable safe handling at a reduced biosafety level, making samples accessible to a diverse array of institutions and investigators. Institutions of all types have an immediate need for guidelines that outline safe collection, handling, and inactivation of samples suspected to contain active virus. Here we provide a practical guide for physicians and researchers wishing to work with materials from patients who are COVID-19 positive or suspected positive. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Practical guidelines for the safe collection and handling of specimens collected from COVID-19 and suspected COVID-19 patients Basic Protocol 2: Inactivating SARS-CoV-2.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Guidelines as Topic , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Specimen Handling , Virus Inactivation , COVID-19 , COVID-19 Testing , Humans , Pandemics , SARS-CoV-2 , Viral Plaque Assay
14.
PLoS One ; 15(5): e0232833, 2020.
Article in English | MEDLINE | ID: mdl-32421732

ABSTRACT

PURPOSE: The risk for glaucoma is driven by the microanatomy and function of the anterior segment. We performed a computation-intense, high-resolution, full-thickness ribbon-scanning confocal microscopy (RSCM) of the outflow tract of two human eyes. We hypothesized this would reveal important species differences when compared to existing data of porcine eyes, an animal that does not spontaneously develop glaucoma. METHODS: After perfusing two human octogenarian eyes with lectin-fluorophore conjugate and optical clearance with benzyl alcohol benzyl benzoate (BABB), anterior segments were scanned by RSCM and reconstructed in 3D for whole-specimen rendering. Morphometric analyses of the outflow tract were performed for the trabecular meshwork (TM), limbal, and perilimbal outflow structures and compared to existing porcine data. RESULTS: RSCM provided high-resolution data for IMARIS-based surface reconstruction of outflow tract structures in 3D. Different from porcine eyes with an abundance of highly interconnected, narrow, and short collector channels (CCs), human eyes demonstrated fewer CCs which had a 1.5x greater cross-sectional area (CSA) and 2.6x greater length. Proximal CC openings at the level of Schlemm's canal (SC) had a 1.3x larger CSA than distal openings into the scleral vascular plexus (SVP). CCs were 10.2x smaller in volume than the receiving SVP vessels. Axenfeld loops, projections of the long ciliary nerve, were also visualized. CONCLUSION: In this high-resolution, volumetric RSCM analysis, human eyes had far fewer outflow tract vessels than porcine eyes. Human CCs spanned several clock-hours and were larger than in porcine eyes. These species differences may point to factors downstream of the TM that increase our vulnerability to glaucoma.


Subject(s)
Trabecular Meshwork/ultrastructure , Animals , Aqueous Humor/physiology , Fluorescent Dyes , Humans , Plant Lectins , Rhodamines , Sclera/blood supply , Sclera/ultrastructure , Species Specificity , Swine/anatomy & histology , Veins/ultrastructure
15.
Cell Mol Life Sci ; 77(5): 835-851, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31901947

ABSTRACT

Lipocalins are a family of secreted adipokines which play important roles in various biological processes. Lipocalin-2 (LCN-2) has been shown to be involved in acute and chronic inflammation. This particular protein is critical in the pathogenesis of several diseases including cancer, diabetes, obesity, and multiple sclerosis. Herein, we discuss the general molecular basis for the involvement of LCN-2 in acute infections and chronic disease progression and also ascertain the probable role of LCN-2 in ocular diseases, particularly in age-related macular degeneration (AMD). We elaborate on the signaling cascades which trigger LCN-2 upregulation in AMD and suggest therapeutic strategies for targeting such pathways.


Subject(s)
Lipocalin-2/genetics , Lipocalin-2/metabolism , Macular Degeneration/genetics , Macular Degeneration/pathology , Vision Disorders/genetics , Animals , Disease Models, Animal , Humans , Inflammation/pathology , Mice , Retina/pathology , Retinal Pigment Epithelium/pathology , Signal Transduction , Vision Disorders/pathology
16.
Commun Biol ; 2: 348, 2019.
Article in English | MEDLINE | ID: mdl-31552301

ABSTRACT

Age-related macular degeneration (AMD) is an expanding problem as longevity increases worldwide. While inflammation clearly contributes to vision loss in AMD, the mechanism remains controversial. Here we show that neutrophils are important in this inflammatory process. In the retinas of both early AMD patients and in a mouse model with an early AMD-like phenotype, we show neutrophil infiltration. Such infiltration was confirmed experimentally using ribbon-scanning confocal microscopy (RSCM) and IFNλ- activated dye labeled normal neutrophils. With neutrophils lacking lipocalin-2 (LCN-2), infiltration was greatly reduced. Further, increased levels of IFNλ in early AMD trigger neutrophil activation and LCN-2 upregulation. LCN-2 promotes inflammation by modulating integrin ß1 levels to stimulate adhesion and transmigration of activated neutrophils into the retina. We show that in the mouse model, inhibiting AKT2 neutralizes IFNλ inflammatory signals, reduces LCN-2-mediated neutrophil infiltration, and reverses early AMD-like phenotype changes. Thus, AKT2 inhibitors may have therapeutic potential in early, dry AMD.


Subject(s)
Macular Degeneration/etiology , Macular Degeneration/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Retina/immunology , Retina/metabolism , Aged , Aged, 80 and over , Animals , Biomarkers , Disease Models, Animal , Female , Gene Expression , Humans , Immunophenotyping , Interferon-gamma/metabolism , Lipocalin-2/genetics , Lipocalin-2/metabolism , Macular Degeneration/pathology , Male , Mice , Mice, Knockout , Models, Biological , Neutrophil Infiltration , Neutrophils/pathology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Retina/pathology
17.
Front Neurosci ; 13: 759, 2019.
Article in English | MEDLINE | ID: mdl-31417342

ABSTRACT

Objective: Reanimation of muscles paralyzed by disease states such as spinal cord injury remains a highly sought therapeutic goal of neuroprosthetic research. Optogenetic stimulation of peripheral motor nerves expressing light-sensitive opsins is a promising approach to muscle reanimation that may overcome several drawbacks of traditional methods such as functional electrical stimulation (FES). However, the utility of these methods has only been demonstrated in rodents to date, while translation to clinical practice will likely first require demonstration and refinement of these gene therapy techniques in non-human primates. Approach: Three rhesus macaques were injected intramuscularly with either one or both of two optogenetic constructs (AAV6-hSyn-ChR2-eYFP and/or AAV6-hSyn-Chronos-eYFP) to transduce opsin expression in the corresponding nerves. Neuromuscular junctions were targeted for virus delivery using an electrical stimulating injection technique. Functional opsin expression was periodically evaluated up to 13 weeks post-injection by optically stimulating targeted nerves with a 472 nm fiber-coupled laser while recording electromyographic (EMG) responses. Main Results: One monkey demonstrated functional expression of ChR2 at 8 weeks post-injection in each of two injected muscles, while the second monkey briefly exhibited contractions coupled to optical stimulation in a muscle injected with the Chronos construct at 10 weeks. A third monkey injected only in one muscle with the ChR2 construct showed strong optically coupled contractions at 5 ½ weeks which then disappeared by 9 weeks. EMG responses to optical stimulation of ChR2-transduced nerves demonstrated graded recruitment relative to both stimulus pulse-width and light intensity, and followed stimulus trains up to 16 Hz. In addition, the EMG response to prolonged stimulation showed delayed fatigue over several minutes. Significance: These results demonstrate the feasibility of viral transduction of peripheral motor nerves for functional optical stimulation of motor activity in non-human primates, a variable timeline of opsin expression in a animal model closer to humans, and fundamental EMG response characteristics to optical nerve stimulation. Together, they represent an important step in translating these optogenetic techniques as a clinically viable gene therapy.

18.
Int J Biochem Cell Biol ; 112: 76-78, 2019 07.
Article in English | MEDLINE | ID: mdl-31085331

ABSTRACT

Recent technological innovations in high-speed microscopes, tissue clearing methods, optics and computation have made it possible to image enormous biologic volumes. These techniques are applicable to a broad range of biomedical disciplines and are becoming a necessary tool for exploring biologic systems that extend beyond cellular microenvironments to entire organs and organisms. Here we broadly discuss the tool sets that are available for cleared tissue imaging and how various choices may influence the planning and feasibility of an experiment.


Subject(s)
Cell Size , Optical Imaging , Animals , Humans , Optical Imaging/instrumentation , Optical Imaging/methods
19.
J Leukoc Biol ; 106(1): 57-81, 2019 07.
Article in English | MEDLINE | ID: mdl-31071242

ABSTRACT

In addition to the known prominent role of polyunsaturated (phospho)lipids as structural blocks of biomembranes, there is an emerging understanding of another important function of these molecules as a highly diversified signaling language utilized for intra- and extracellular communications. Technological developments in high-resolution mass spectrometry facilitated the development of a new branch of metabolomics, redox lipidomics. Analysis of lipid peroxidation reactions has already identified specific enzymatic mechanisms responsible for the biosynthesis of several unique signals in response to inflammation and regulated cell death programs. Obtaining comprehensive information about millions of signals encoded by oxidized phospholipids, represented by thousands of interactive reactions and pleiotropic (patho)physiological effects, is a daunting task. However, there is still reasonable hope that significant discoveries, of at least some of the important contributors to the overall overwhelmingly complex network of interactions triggered by inflammation, will lead to the discovery of new small molecule regulators and therapeutic modalities. For example, suppression of the production of AA-derived pro-inflammatory mediators, HXA3 and LTB4, by an iPLA2 γ inhibitor, R-BEL, mitigated injury associated with the activation of pro-inflammatory processes in animals exposed to whole-body irradiation. Further, technological developments promise to make redox lipidomics a powerful approach in the arsenal of diagnostic and therapeutic instruments for personalized medicine of inflammatory diseases and conditions.


Subject(s)
Apoptosis , Inflammation/metabolism , Lipidomics , Signal Transduction/physiology , Animals , Fatty Acids, Unsaturated/metabolism , Humans , Inflammation/etiology , Iron/metabolism , Lipid Peroxidation , Oxidation-Reduction , Whole-Body Irradiation
20.
Cancer Res ; 79(11): 2962-2977, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30952634

ABSTRACT

Targeting microenvironmental factors that foster migratory cell phenotypes is a promising strategy for halting tumor migration. However, lack of mechanistic understanding of the emergence of migratory phenotypes impedes pharmaceutical drug development. Using our three-dimensional microtumor model with tight control over tumor size, we recapitulated the tumor size-induced hypoxic microenvironment and emergence of migratory phenotypes in microtumors from epithelial breast cells and patient-derived primary metastatic breast cancer cells, mesothelioma cells, and lung cancer xenograft cells. The microtumor models from various patient-derived tumor cells and patient-derived xenograft cells revealed upregulation of tumor-secreted factors, including matrix metalloproteinase-9 (MMP9), fibronectin (FN), and soluble E-cadherin, consistent with clinically reported elevated levels of FN and MMP9 in patient breast tumors compared with healthy mammary glands. Secreted factors in the conditioned media of large microtumors induced a migratory phenotype in nonhypoxic, nonmigratory small microtumors. Subsequent mathematical analyses identified a two-stage microtumor progression and migration mechanism whereby hypoxia induces a migratory phenotype in the initialization stage, which then becomes self-sustained through a positive feedback loop established among the tumor-secreted factors. Computational and experimental studies showed that inhibition of tumor-secreted factors effectively halts microtumor migration despite tumor-to-tumor variation in migration kinetics, while inhibition of hypoxia is effective only within a time window and is compromised by tumor-to-tumor variation, supporting our notion that hypoxia initiates migratory phenotypes but does not sustain it. In summary, we show that targeting temporal dynamics of evolving microenvironments, especially tumor-secreted factors during tumor progression, can halt tumor migration. SIGNIFICANCE: This study uses state-of-the-art three-dimensional microtumor models and computational approaches to highlight the temporal dynamics of tumor-secreted microenvironmental factors in inducing tumor migration.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Tumor Hypoxia , Animals , Antigens, CD/immunology , Antigens, CD/metabolism , Breast Neoplasms/drug therapy , Cadherins/antagonists & inhibitors , Cadherins/immunology , Cadherins/metabolism , Cell Movement , Female , Fibronectins/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinases/metabolism , Mice , Models, Theoretical , Tumor Cells, Cultured , Tumor Microenvironment , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...